Vydyne® R530HR BK652 polyamide 66

Vydyne R530HR is specifically formulated to give superior hydrolysis resistance for demanding automotive cooling system components. This product has demonstrated more than twice the tensile strength and elongation retention of standard 30% glass-fiber reinforced PA66 after 3,500 hours of aging in automotive coolant at 120° C. Vydyne R530HR demonstrates

similar property retention benefits at 130° C for 1,000 hours of coolant aging as well.

Typical Applications/End Uses: To come

General					
Material Status	Commercial: Active				
Availability	Asia Pacific	• Europe	North America		
Filler / Reinforcement	• Glass Fiber, 30% Filler by We	eight			
Additive	Heat Stabilizer	• Lubricant			
Features	Antifreeze ResistantFatigue ResistantGasoline Resistance	Good Chemical ResistanceHeat StabilizedHigh Flow	LubricatedSolvent Resistant		
Uses	Automotive Under the Hood				
Agency Ratings	• ASTM D 4066 PA0121G30	• ASTM D 6779 PA0121G30			
UL File Number	• E70062				
Appearance	• Black				
Forms	• Pellets				
Processing Method	Injection Molding				
Physical	Dry	Conditioned	Unit	Test Method	
Density	1.37		g/cm³	ISO 1183	
Molding Shrinkage				ISO 294-4	
Across Flow: 73°F, 0.0787 in	0.90		%		
Flow: 73°F, 0.0787 in	0.40		%		
Water Absorption (73°F, 24 hr)	0.90		%	ISO 62	
Water Absorption (Equilibrium, 50% RH)	1.9		%	ISO 62	
Mechanical	Dry	Conditioned	Unit	Test Method	
Tensile Modulus (73°F)	1.40E+6	1.03E+6	psi	ISO 527-2	
Tensile Stress (Break, 73°F)	26800	21000	psi	ISO 527-2	
Tensile Strain (Break, 73°F)	4.0	5.0	%	ISO 527-2	
Flexural Modulus (73°F)	1.31E+6	798000	psi	ISO 178	
Flexural Stress (73°F)	39200	27600	psi	ISO 178	
Poisson's Ratio (73°F)	0.40			ISO 527	

© 2015 Ascend Performance Materials Operations LLC. The Ascend Performance Materials and Vydyne marks and logos are trademarks of Ascend Performance Materials Operations LLC. These trademarks have been registered in jurisdictions throughout the world, including the United States of America and the European Community.

Impact	Dry	Conditioned	Unit	Test Method
Charpy Notched Impact Strength				ISO 179
-22°F	4.9	5.2	ft·lb/in²	
73°F	5.3	7.6	ft·lb/in²	
Charpy Unnotched Impact Strength				ISO 179
-22°F	41	50	ft·lb/in²	
73°F	45	52	ft·lb/in²	
Notched Izod Impact Strength				ISO 180
-22°F	4.8	5.2	ft·lb/in²	
73°F	5.7	6.2	ft·lb/in²	
Thermal	Dry	Conditioned	Unit	Test Method
Heat Deflection Temperature				ISO 75-2/B
66 psi, Unannealed	496		°F	
Heat Deflection Temperature				ISO 75-2/A
264 psi, Unannealed	477		°F	
Melting Temperature	500		°F	ISO 11357-3
CLTE - Flow (73 to 131°F, 0.0787 in)	1.2E-5		in/in/°F	ISO 11359-2
CLTE - Transverse (73 to 131°F, 0.0787 in)	5.9E-5		in/in/°F	ISO 11359-2
Injection		Dry Unit		
Drying Temperature		176 °F		
Drying Time		4.0 hr		
Suggested Max Regrind		25 %		
Rear Temperature		536 to 590 °F		
Middle Temperature		536 to 590 °F		
Front Temperature		536 to 590 °F		
Nozzle Temperature		536 to 590 °F		
Processing (Melt) Temp		545 to 581 °F		
Mold Temperature		149 to 203 °F		

© 2015 Ascend Performance Materials Operations LLC. The Ascend Performance Materials and Vydyne marks and logos are trademarks of Ascend Performance Materials Operations LLC. These trademarks have been registered in jurisdictions throughout the world, including the United States of America and the European Community.

Vydyne® R530HR BK652 polyamide 66

Notes

Typical properties: these are not to be construed as specifications.

¹ Typical properties: these are not to be construed as specifications.

North America +1 888 927 2363 **Europe** +32 10 608 600

Asia +86 21 6340 3300

Disclaimer of Warranty and Liability

NOTICE: Although the information and recommendations set forth herein (hereinafter "information") are presented in good faith and believed to be correct as of the date hereof, Ascend Performance Materials Operations LLC makes no representations or warranties as to the completeness or accuracy thereof.

Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Ascend Performance Materials Operations LLC be responsible for damages of any nature whatsoever resulting from the use of or reliance upon information or the products to which information refers. Nothing contained herein is to be construed as a recommendation to use any product, equipment or formulation in conflict with any patent, and Ascend Performance Materials Operations LLC makes no representation or warranty, express or implied, that use thereof will not infringe any patent. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information or the product to which information refers.

© 2015 Ascend Performance Materials Operations LLC. The Ascend Performance Materials and Vydyne marks and logos are trademarks of Ascend Performance Materials Operations LLC. These trademarks have been registered in jurisdictions throughout the world, including the United States of America and the European Community.